Abstract

Photovoltaic (PV) is a high-potential renewable energy technology for Kuwait to pursue due to high daily irradiation, and has garnered local attention in recent years due to the growing energy demand and concerns over climate change. As yet, no data are available regarding the actual performance of PV systems in Kuwait’s harsh environment. This paper presents a 12-month-long performance evaluation of the first 85.05kWp and 21.6kWp copper indium gallium selenide (CIGS) thin film, grid-connected PV systems on the rooftops of two schools. The schools’ monthly energy consumption and PV generation profiles, the actual performance of the PV plants, the effectiveness of automated cleaning systems on the power output, and the benefits of PV implementation in schools were analyzed and evaluated. Data analysis was applied to filter and normalize the data in order to identify the actual performance parameters. The findings of the study, based on solar irradiation collected, the performance of the module technology and the effectiveness of the automated cleaning systems, show that the performance ratio was maintained between 0.74 and 0.85. Furthermore, the minimum monthly energy yield of the PV systems was about 104kWh/kWp. The annual average daily final yields of the PV systems in this study were 4.5kWh/kWp/day. The results provided insight into the performance of CIGS grid-connected PV systems in Kuwait, and those data will be beneficial to the PV research community worldwide. School buildings, particularly for the rooftops, are a unique and important asset for urban PV system implementation, because they provide a combination of relatively large, unused, suitable areas, which would make distributed and effective solar power generation possible on the national level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.