Abstract
In this letter, we analyze the performance of multiple input-queued asynchronous transfer mode (ATM) switches that use parallel iterative matching (PIM) for scheduling the transmission of head-of-line cells in the input queues. A queueing model of the switch is developed under independently, identically distributed, two-state Markov modulated Bernoulli processes bursty traffic. The underlying Markov chain of the queueing model is a quasi-birth-death (QBD) chain. The QBD chain is solved using an iterative computing method. Interesting performance metrics of the ATM switch such as the throughput, the mean cell delay, and the cell loss probability can be derived from the model. Numerical results from both the analytical model and simulation are presented, and the accuracy of the analysis is briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.