Abstract
The availability of the Global Positioning System (GPS) trajectory data is increasing along with the availability of different GPS receivers and with the increasing use of various mobility services. GPS trajectory is an important data source which is used in traffic density detection, transport mode detection, mapping data inferences with the use of different methods such as image processing and machine learning methods. While the data size increases, efficient representation of this type of data is becoming difficult to be used in these methods. A common approach is the representation of GPS trajectory information such as average speed, bearing, etc. in raster image form and applying analysis methods. In this study, we evaluate GPS trajectory data rasterization using the spatial join functions of QGIS, PostGIS+QGIS, and our iterative spatial structured grid aggregation implementation coded in the Python programming language. Our implementation is also parallelizable, and this parallelization is also included as the fourth method. According to the results of experiment carried out with an example GPS trajectory dataset, QGIS method and PostGIS+QGIS method showed relatively low performance with respect to our method using the metric of total processing time. PostGIS+QGIS method achieved the best results for spatial join though its total performance decreased quickly while test area size increases. On the other hand, both of our methods’ performances decrease directly proportional to GPS point. And our methods’ performance can be increased proportional to the increase with the number of processor cores and/or with multiple computing clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.