Abstract

This paper proposes a latent statistical model for analyzing global positioning system (GPS) trajectory data. Because of the rapid spread of GPS-equipped devices, numerous GPS trajectories have become available, and they are useful for various location-aware systems. To better utilize GPS data, a number of sensor data mining techniques have been developed. This paper discusses the application of a latent statistical model to two closely related problems, namely, moving mode estimation and interpolation of the GPS observation. The proposed model estimates a latent mode of moving objects and represents moving patterns according to the mode by exploiting a large GPS trajectory dataset. We evaluate the effectiveness of the model through experiments using the GeoLife GPS Trajectories dataset and show that more than three-quarters of covered locations were correctly reproduced by interpolation at a fine granularity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.