Abstract
Network virtualization is not only regarded as a promising technology to create an ecosystem for cloud computing applications, but also considered a promising technology for the future Internet. One of the most important issues in network virtualization is the virtual network embedding (VNE) problem, which deals with the embedding of virtual network (VN) requests in an underlying physical (substrate network) infrastructure. When both the node and link constraints are considered, the VN embedding problem is NP-hard, even in an offline situation. Some Artificial Intelligence (AI) techniques have been applied to the VNE algorithm design and displayed their abilities. This paper aims to compare the computational effectiveness and efficiency of different AI techniques for handling the cost-aware VNE problem. We first propose two kinds of VNE algorithms, based on Ant Colony Optimization and genetic algorithm. Then we carry out extensive simulations to compare the proposed VNE algorithms with the existing AI-based VNE algorithms in terms of the VN Acceptance Ratio, the long-term revenue of the service provider, and the VN embedding cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.