Abstract
This paper deals with the problem of increasing the energy efficiency of a hybrid vertical take-off and landing aircraft. To this end, an innovative aerial vehicle was developed, featuring a distributed electrical propulsion system with ducted-fan rotors. To compare and analyze the effectiveness of the proposed propulsion system, two configurations with a different number of ducted-fan rotors were examined: a four-rotor configuration and a six-rotor configuration. The mathematical model of the four-rotor configuration was derived using the Newton–Euler formalism, allowing the design and implementation of a control strategy for conducting model-in-the-loop simulations. These simulations enabled the evaluation and analysis of the performance of the proposed propulsion system, where the numerical results demonstrated the functionality of both designs and showed that, during the multirotor flight, the configuration with six rotors increased its energy efficiency by up to 11%, providing higher vertical lift with the same power consumption. This was achieved by distributing its weight among a higher number of engines. The incorporation of two additional ducted fans increased the weight and the drag of the six-rotor configuration, resulting in a low augmentation in power consumption of 1%. Finally, this caused a decrease in airspeed by up to 4% during the cruise speed phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.