Abstract

In this study, a novel vapor-compression refrigeration cycle with mechanical subcooling using an ejector is proposed to improve the performance of a conventional single-stage vapor-compression refrigeration cycle. In the theoretical study, a mathematical model is developed to predict the performance of the cycle by using R404A and R290, and then compared with that of the conventional refrigeration cycle. The simulation results show that the performance of the ejector subcooled cycle is better than that of the conventional cycle. When the evaporator temperature ranges from −40 to −10°C and the condenser temperature is 45°C, the novel cycle displays volumetric refrigeration capacity improvements of 11.7% with R404A and 7.2% with R290. And the novel cycle achieves COP improvements of 9.5% with R404A and 7.0% with R290. In addition, the improvement of the COP and cooling capacity of this novel cycle largely depends on the operation pressures of the ejector. The potential practical advantages offered by the cycle may be worth further attention in future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call