Abstract

In this study, two types of refrigeration cycles, a vapour compression refrigeration (VCR) cycle and a vapour absorption refrigeration (VAR) cycle, have been modelled and analysed. Both the cycles have same operating cooling loads and both operate between the same temperature limits. R134a has been considered as refrigerant for the VCR cycle whereas LiBr-H2O has been considered as the working fluid for the VAR cycle. Energetic and exergetic performances have been evaluated for both the cycles and compared. The effects of condenser temperature, evaporator temperature and environmental dead state temperature on the performances of these cycles are also discussed. Energy analysis reveals that the coefficient of performance (COP) of the VCR cycle is considerably higher than that of VAR cycle. However, exergy analysis reveals that the exergetic coefficient of performance (ECOP) of the VAR cycle is very close to that of VCR cycle. For environmental dead state temperature beyond 35°C, the exergetic performance of VAR cycle is better than that of VCR cycle. The maximum exergy destruction occurs at the evaporator for the VCR cycle but for VAR cycle, the maximum exergy destruction occurs at the generator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.