Abstract
In this paper, we present a comprehensive analysis of the performance of a wireless sensor network based target tracking system using the particle filter. In particular, we evaluate the effect of various network design parameters such as the number of nodes, number of generated particles, and sampling interval on the tracking accuracy and computation time of the tracking system. Based on our analysis, we also present recommendations on suitable values for the relevant network design parameters, which provide a reasonable tradeoff between accuracy and computational expense for this problem. In addition, we also analyse the theoretical Cramer-Rao bound as the benchmark for the best possible tracking performance. We demonstrate that the results from our simulations closely match the theoretical bounds. We also present initial results from experiments comprising of a 25 node wireless sensor network. Initial experimental results are promising and show that the PF based estimation is suitable for detection and tracking using inexpensive wireless sensor network devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.