Abstract

Using the sensor nodes to achieve target tracking is a challenging problem in resource-limited wireless sensor networks. The tracking nodes are usually required to consume much energy to improve the tracking performance. In this paper, an energy-efficient node scheduling method is proposed to minimize energy consumption while ensuring the tracking accuracy. Firstly, the Kalman-consensus filter is constructed to improve the tracking accuracy and predict the target position. Based on the predicted position, an adaptive node scheduling mechanism is utilized to adjust the sample interval and the number of active nodes dynamically. Rather than using traditional search algorithm, the scheduling problem is decomposed to decouple the sample interval and number of nodes. And the node index is mapped into real domain to get closed-form solution to decide the active nodes. Thus, the NP-complete nature is avoided in the proposed method. The proposed scheduling method can keep the tracking accuracy while minimizing energy consumption. Simulation results validate its effective performance for target tracking in wireless sensor networks.

Highlights

  • Wireless sensor network (WSN), which consists of tiny lowcost, energy-limited, and sensing range-limited nodes, has received extensive research in recent years

  • The current adaptive node selection method could not permit large candidate node set because of their high complexity. Comprehending these factors, this paper aims to propose a novel node scheduling method with cooperative Kalmanconsensus filter to reduce the energy consumption while keeping tracking accuracy

  • The intruder detection and tracking system in military is a representative application of target tracking

Read more

Summary

Introduction

Wireless sensor network (WSN), which consists of tiny lowcost, energy-limited, and sensing range-limited nodes, has received extensive research in recent years. The nodes in WSN, equipped with one or more sensors, can sense, measure, and gather information from vicinal area. By utilizing the wireless RF module, these nodes can transmit the gathered information from local region to remote base station through node’s multiple-hop relay. With the development of microelectronic technology, WSN has been deployed in various application scenarios to observe physical environmental change and detect events of interest [1]. In all kinds of practical scenarios, target tracking is one of the most important applications of WSN. Target tracking is a process of estimating or predicting the trajectories and velocities of some mobile targets by the sensor nodes in WSN collaboratively. The targets of tracking can be any mobile objects, such as animals, humans, and vehicles [2]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call