Abstract

The present study investigates the biodegradation of two potentially toxic terrestrial weeds Parthenium hysterophorus and Lantana camara, implementing a novel two-stage biodegradation technique; Rotary drum composting followed by vermicomposting (RV). The RV approach was refined for a 7-day thermophilic degradation in an in-vessel rotary drum composter, followed by a 20-day mesophilic degradation utilizing Eisenia fetida and Eudrilus eugeniae vermi-monocultures. However, rotary drum composting (RDC) was performed for both the weeds (for 27 days), facilitating only initial thermophilic degradation to compare the efficacy of the RV technique. Lignocelluloses analysis revealed that cellulose degradation doubled during RV technique, indicating efficient biodegradation in reactors administered with E. fetida vermiculture compared to RDC (19.60 to 42.80% and 26.80 to 66.50% in P. hysterophorus and L. camara feedstocks). Further, these results also correlated with the X-Ray diffractograms of all trials showing the degradation of crystalline cellulose at 2θ: 20–50° for RV. Moreover, to ensure product safety, the analyzed total heavy metals content also unveiled the advantage of RV over RDC as validated by the accumulation of higher concentrations of zinc (45% and 33% in P. hysterophorus and L. camara feedstocks) and lead (55% and 45% in P. hysterophorus and L. camara feedstocks) in reactors with E. fetida. The material’s seed germination index increased to 80% in the final product of all trials in the RV technique, indicating the diminishing of the phytotoxic nature. Subsequently, pot studies also indicated that the RV technique was coherent in managing noxious weeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call