Abstract

Supercritical hydrogen with a temperature of less than 20 K and a pressure of 1.5 MPa is used as moderator material at J-PARC. Total nuclear heating of 3.75 kW is generated by three moderators for a 1-MW proton beam operation. We have developed an orifice-type high-power heater for thermal compensation to mitigate hydrogen pressure fluctuation caused by the abrupt huge heat load and to reduce the fluctuation in the temperature of the supply hydrogen to less than 0.25 K. Through a performance test, we confirmed that the developed orifice-type heater could be heated uniformly and showed fast response, as expected. Furthermore, a simulation model that can describe heater behaviors has been established on the basis of the experimental data. The heater control approach was studied using the aforementioned heater simulation model and a dynamic simulation code developed by the authors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.