Abstract

In this paper, we consider a cognitive radio network with multiple secondary users (SUs). The SU packets in the system can be divided into two categories: SU1 packets and SU2 packets, where SU1 packets have transmission priority over SU2 packets. Considering the absolute priority of the primary users (PUs), the PU packets have the highest priority in the system to transmit. In order to guarantee the Quality of Service (QoS) of the network users, as well as reduce the average delay of the SU2 packets, we propose an adjustable access control scheme for the SU2 packets. A newly arriving SU2 packet can access the system with an access probability related to the total number of packets in the system. A variable factor is also introduced to adjust the access probability dynamically. Based on the working principle of the adjustable access control scheme, we build a discrete-time queueing model with a finite waiting room and an adjustable joining rate. With a steady-state analysis of the queueing model, using a three-dimensional Markov chain, we derive some performance measures, such as the total channel utilization, the interruption rate, the throughput, and the average delay of the SU2 packets. Moreover, we show the influence of the adjustment factor on different system performance measures by using numerical results. Finally, considering the trade-off between the throughput and the average delay of the SU2 packets with respect to the adjustment factor, we build a net benefit function and show an optimal algorithm to optimize the adjustment factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.