Abstract

We investigate a high-sensitivity surface plasmon resonance (SPR) biosensor consisting of a Au layer, four-layer MoS2, and monolayer graphene. The numerical simulations, by the transfer matrix method (TMM), demonstrate the sensor has a maximum sensitivity of 282°/RIU, which is approximately 2 times greater than the conventional Au-based SPR sensor. The finite difference time domain (FDTD) indicates that the presence of MoS2 film generates a strong surface electric field and enhances the sensitivity of the proposed SPR sensor. In addition, the influence of the number of MoS2 layers on the sensitivity of the proposed sensor is investigated by simulations and experiments. In the experiment, MoS2 and graphene films are transferred on the Au-based substrate by the PMMA-based wet transfer method, and the fabricated samples are characterized by Raman spectroscopy. Furthermore, the fabricated sensors with the Kretschmann configuration are used to detect okadaic acid (OA). The okadaic acid–bovine serum albumin bioconjugate (OA-BSA) is immobilized on the graphene layer of the sensors to develop a competitive inhibition immunoassay. The results show that the sensor has a very low limit of detection (LOD) of 1.18 ng/mL for OA, which is about 22.6 times lower than that of a conventional Au biosensor. We believe that such a high-sensitivity SPR biosensor has potential applications for clinical diagnosis and immunoassays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.