Abstract
AbstractSilicon nitride coating deposited by the plasma‐enhanced chemical vapor deposition method is the most widely used antireflection coating for crystalline silicon solar cells. In this work, we employed double‐layered silicon nitride coating consisting of a top layer with a lower refractive index and a bottom layer (contacting the silicon wafer) with a higher refractive index for multicrystalline silicon solar cells. An optimization procedure was presented for maximizing the photovoltaic performance of the encapsulated solar cells or modules. The dependence of their photovoltaic properties on the thickness of silicon nitride coatings was carefully analyzed. Desirable thicknesses of the individual silicon nitride layers for the double‐layered coatings were calculated. In order to get statistical conclusions, we fabricated a large number of multicrystalline silicon solar cells using the standard production line for both the double‐layered and single‐layered antireflection coating types. On the cell level, the double‐layered silicon nitride antireflection coating resulted in an increase of 0.21%, absolute for the average conversion efficiency, and 1.8 mV and 0.11 mA/cm2 for the average open‐circuit voltage and short‐circuit current density, respectively. On the module level, the cell to module power transfer factor was analyzed, and it was demonstrated that the double‐layered silicon nitride antireflection coating provided a consistent enhancement in the photovoltaic performance for multicrystalline silicon solar cell modules than the single‐layered silicon nitride coating. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Photovoltaics: Research and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.