Abstract

To fulfil the growing need for energy, researchers are consistently working on enhancing the effectiveness of solar cells. Keeping the same goal in mind, a completely inorganic Cs2AgInBr6-based perovskite solar cell (PSC) is simulated by the SCAPS 1D simulation package. A completely inorganic design is preferred to achieve good stability and a good efficiency of 32.517 %. Enhancement in device performance is achieved by optimizing various parameters, including the back electrode's work function, absorber thickness and defect density, and charge transport layers' thickness, doping density and defect density. Under optimized conditions, a conversion efficiency of 32.517 % is achieved using palladium (Pd) as the back contact metal. The study emphasizes an absorber thickness of 600 nm and defect density of 1.8 × 1011 cm−3 as optimal for maximizing photovoltaic performance parameters. The charge transport layers TiO2 as ETL and CuO as HTL are optimized to achieve the utmost photovoltaic properties. The HTL thicknesses around 200 nm and ETL thicknesses around 10 nm are suitable for high-efficiency solar cells. The p-type doping in HTL and n-type doping in ETL is varied from 1014 cm−3 to 1023 cm−3. The changing doping level has a small affect on the photovoltaic parameters. Considering all four parameters, the medium doping levels around 1018 cm−3 are good for HTL and ETL. Further, the effect of series resistance, shunt resistance, and temperature on perovskite solar cell performance are also investigated. The power conversion efficiency and fill factor are better at lower temperatures. The efficiency decreases from 34.189 % to 26.211 % and the fill factor declines from 91.400 % to 85.002 % as the temperature rises from 260 K to 450 K. Overall, the research ensures the significant improvement in photovoltaic potential for inorganic Cs2AgInBr6 based PSCs through the utilization of low-cost back contact metal Pd and inorganic transport materials such as TiO2 and CuO. The article will serve as a comprehensive guide for researchers keen on developing perovskite solar cells, specifically focusing on selecting various material properties for the absorber and charge transport layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.