Abstract

A step-graded Al x Ga 1- x N electron blocking layer (EBL) is introduced to the InGaN -based edge-emitting blue-violet laser diode (LD) structure to suppress the undesired built-in interface polarization charges. When compared to a conventional abrupt Al 0.18 Ga 0.82 N EBL design, the step-graded Al x Ga 1- x N EBL design may help reduce the electron accumulation at the edge of the active region and hence improve the quantum efficiency in LD operation. The effects of the step-graded Al x Ga 1- x N EBL on the fabricated device performance are also investigated. LDs with the step-graded Al x Ga 1- x N EBL demonstrated significantly reduced threshold current density and increased slope efficiency under the continuous-wave operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.