Abstract

The present work is focused on enhancing the overall thermo-hydraulic performance of a previously proposed C-shaped printed circuit heat exchanger (PCHEs) using Machine Learning (ML) Algorithms. In this context, CFD analysis is carried out on 81 different channel configurations of the C-shaped channel geometry, and computed data is used to train three ML algorithms. Later, C-shaped channel geometry is optimized by coupling the trained ML model with the multi-objective genetic algorithm (MOGA). Finally, the optimized channel geometry (called optimized ML ) is investigated numerically for a wide range of Reynolds numbers. Its performance is compared with the zigzag geometry, C-shaped base geometry, and previously optimized C-shape channel geometry using response surface methodology (RSM). The findings showed that the multilayered approach combining MOGA, CFD, and machine learning techniques is beneficial to accomplish a robust and realistic optimized solution. Comparing the thermo-hydraulic characteristics of the optimized ML channel geometry with zigzag channel geometry shows that the former is up to 1.24 times better than the latter based on the performance evaluation criteria (PEC). Furthermore, the overall performance of the optimize ML channel geometry was found up to 21% and 16% higher than the optimized RSM geometry on the cold and hot sides, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.