Abstract

We have analyzed experimental data on the effect of short-term melting followed by recrystallization on the microstructure and critical current density of YBa2Cu3O7 − x , Bi2Sr2CaCu2O8 − x , and Bi2Sr2Ca2Cu3O10 − x high-T c ceramics. The ceramics were melted using different heat sources: infrared lamps, laser radiation, and electric current. A significant increase in the critical current density of Bi2Sr2Ca2Cu3O10 − x ceramics (by a factor of 40 at 20 K and by a factor of 8 at 77 K) was achieved using cw CO2 laser irradiation. Melting TiC-doped (0.1%) Bi2Sr2Ca2Cu3O10 − x ceramics with a CO2 laser, followed by annealing, insured an even larger increase in critical current density: by a factor of 35 at 77 K. We have calculated the thickness of the molten layer produced by laser heating of high-T c ceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.