Abstract
Over the past decades Kalman filtering (KF) algorithms have been extensively investigated and applied in the area of kinematic positioning. In the application of KF in kinematic precise point positioning (PPP), it is often the case where some known functional or theoretical relations exist among the unknown state parameters, which can be and should be made use of to enhance the performance of kinematic PPP, especially in an urban and forest environment. The central task of this paper is to effectively blend the commonly used GNSS data and internal/external additional constrained information to generate an optimal PPP solution. This paper first investigates the basic algorithm of constrained Kalman filtering. Then two types of PPP model with speed constraints and trajectory constraints, respectively, are proposed. Further validation tests based on a variety of situations show that the positioning performances (positioning accuracy, reliability and continuity) from the constrained Kalman filter are significantly superior to those from the conventional Kalman filter, particularly under extremely poor observation conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have