Abstract

In mixed analog-digital designs, digital switching noise is an important limitation for the performance of analog and RF circuits. This paper reports a physical model describing the impact of digital switching noise on LC-tank voltage-controlled oscillators (VCOs) in lightly doped substrates. The model takes into account the propagation from the source of substrate noise to the different components in the VCO and the resulting modulation of the oscillator frequency. The model is validated with measurements on a 3.5-GHz LC-tank VCO designed in 0.18-/spl mu/m CMOS. It reveals that for this VCO, impact occurs mainly via the nonideal metal ground lines for lower frequencies and low tuning voltage and via the integrated inductors for higher frequencies and high tuning voltage. To make the design immune to substrate noise, the parasitic resistance of the on-chip ground interconnect has to be kept as low as possible and inductors have to be shielded. Hence, the developed model allows investigating the dominant mechanisms behind the impact of substrate noise on a VCO, which is crucial information for achieving a substrate noise immune design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call