Abstract

Substrate coupling in mixed-signal IC's can cause important performance degradation of the analog circuits. Accurate simulation is therefore needed to investigate the generation, propagation, and impact of substrate noise. Recent studies were limited to the time-domain behavior of generated substrate noise and to noise injection from a single noise source. This paper focuses on substrate noise generation by digital circuits and on the spectral content of this noise. To simulate the noise generation, a SPICE substrate model for heavily doped epi-type substrates has been used. The accuracy of this model has been verified with measurements of substrate noise, using a wide-band, continuous-time substrate noise sensor, which allows accurate measurement of the spectral content of substrate noise. The substrate noise generation of digital circuits is analyzed, both in the time and frequency domain, and the influence of the different substrate noise coupling mechanisms is demonstrated. It is shown that substrate noise voltages up to 20 mV are generated and that, in the frequency band up to 1 GHz, noise peaks are generated at multiples of the clock and repetition frequency. These noise signals will strongly deteriorate the behavior of small signal analog amplifiers, as used in integrated front-ends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call