Abstract

The performance comparison of target localization for active sonar and effective fusion algorithms for target localization of multistatic sonar is investigated. Active sonar can be categorized into monostatic, bistatic, and multistatic, depending on the number of receiver elements. Target localization performance depends on the system configuration. The target localization performance of the monostatic, bistatic, and multistatic sonar systems is compared assuming that each element can receive both range and azimuth information of the target. In addition, we propose the weighted least square (WLS) algorithm, which incorporates judicial weighting to the conventional least square (LS) method, and an efficient sensor arrangement rule for target localization in the multistatic sonar system. The representative experimental results demonstrate that the target localization performance of multistatic sonar configuration is superior in terms of root-mean-square error (RMSE), to monostatic sonar and bistatic sonar by 35.98% and 37.45%, respectively, while the proposed WLS algorithm showed an improvement of 2.27% compared with the LS method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.