Abstract
AbstractThe catalytic activity of Pt1–xPdx nanoparticles supported on carbon nanotubes (CNTs) was evaluated for both the hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR) of polymer electrolyte membrane fuel cells (PEMFCs). Using a colloidal method, Pt1–xPdx/CNTs catalysts (x = 0, 0.46, 0.76, and 0.9) were prepared, and their physical and electrochemical characteristics were analyzed using a variety of characterization techniques, including XRD, TEM, energy dispersive spectrometer, cyclic voltammetry, and electrochemical impedance spectroscopy. Both Pt and Pd atoms formed a continuous solid solution and thus were randomly mixed in Pt1–xPdx nanoparticles. Due to the high hydrogen absorption of Pd, the use of Pd in the catalyst provided an advantage for HOR but a disadvantage for ORR. The Pt0.53Pd0.47/CNTs catalyst in the anode and cathode showed the best cell performance of PEMFCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have