Abstract

ABSTRACT: In this study, two different types of controllers have been designed and tested for altitude and motion control of an autonomous quadrotor to compare the control performance under the influence of parametric uncertainty and disturbances. The first controller is a proportional-integral-derivative (PID) controller which is a conventional linear controller. The closed-loop PID algorithms calculate the results of the system by using the error values that consist of the difference between the sensor values measured by the closed-loop feedback method and the reference inputs. The second method that has been used is artificial neural network (ANN) algorithms, which provide both advantages and convenience in defining and controlling linear systems and non-linear systems with the closed-loop feedback method used in PID. The most important feature of the ANN algorithms is their high performance as a result of training with different input values. Therefore, the ANN control system has been trained with the input data used with Gaussian noise and the desired target data. A dynamic time series non-linear autoregressive with Exogenous input (NARX) neural network has been chosen as an ANN controller because of the time-delayed backpropagation learning performance. In this study, PID, and NARX NN control algorithms to control the maneuvers and altitude of the quadcopter and the mathematical model have been designed on Matlab Simulink. Motion control performances of the PID and NARX controllers are tested on the model. The design was tested on a real-time simulation environment with a one-millisecond fixed-step size. This paper proposes an alternative approach to control attitude and altitude on a quadcopter with the NARX NN algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call