Abstract

The high-precision regional geoid model provides important fundamental geospatial information for developing and applying many disciplines. Deterministic and stochastic modifications are applied to Stokes’s and Hotine’s formulas of geoid modeling to reduce errors. Based on the Experimental Geopotential Model 2019 (XGM2019), this paper used Stokes’s and Hotine’s formulas to analyze the variation of global root mean square error (RMSE) with modification parameters for two deterministic (Wong and Gore; and Vaníček and Kleusberg) and three stochastic modifications (biased, unbiased, and optimum). Taking the quasigeoid refinement of Jilin Province as an example, the global RMSE, approximate geoid undulation, and additive corrections were calculated. The parameter analysis and the global RMSE calculation showed that the variation of the modification limits and the terrestrial gravity data error variance had a centimeter-level effect on the global RMSE. In contrast, the impact of the integration radius was relatively small. The stochastic modifications were better than the deterministic ones in calculating the global RMSE. The global RMSE of Hotine’s formula was smaller than that of Stokes’s, and its unbiased and optimum modifications reached the minimum value of 12.9 mm. The validation of XGM2019 and the refined quasigeoid based on the high accuracy GPS/leveling points showed that the standard deviation (STD) of XGM2019 was 5.8 cm in Jilin Province, and the refined optimal quasigeoid model was 2.9 cm. Stokes’s and Hotine’s formulas provided the same accuracy in the study area. In the western plain area, the accuracy of the deterministic modifications was 2.0 cm, which was about 0.4 cm higher than that of the stochastic modifications. In the eastern mountainous area, the stochastic modifications were better than the deterministic ones, and the accuracy was about 3.2 cm. Stokes’s and Hotine’s formulas based on deterministic and stochastic modifications significantly improve the accuracy of the XGM2019. The deterministic and stochastic modifications show millimeter-level differences in plain and mountainous areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call