Abstract

Droop control has limitations with respect to current sharing since the output current delivered by the inverters depends on their output impedance ratios. In addition, harmonic voltage drops due to the flow of harmonic currents induce voltage distortion at the point of common coupling (PCC). Virtual impedance loops were proposed in literature to improve the current sharing between the inverters by normalizing the output impedance of the inverters. However, virtual impedance loops have constraints in this respect since the improvement in the current sharing occurs through redistribution of the current harmonics which can add to the voltage distortion at the PCC. This paper compares the performance of resistive, inductive, inductive-resistive and resistive-capacitive virtual impedance loops with respect to current sharing and voltage harmonic distortion at the PCC. Simulation results are given for a single phase microgrid setup to achieve a fair performance comparison of the different virtual impedance techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.