Abstract
In this paper, a novel approach is proposed for selective compensation of main voltage harmonics in a grid-connected microgrid. The aim of compensation is to provide a high voltage quality at the point of common coupling (PCC). PCC voltage quality is of great importance due to sensitive loads that may be connected. It is assumed that the voltage harmonics are originated from distortion in grid voltage as well as the harmonic current of the nonlinear loads. Harmonic compensation is achieved through proper control of distributed generators (DGs) interface converters. The compensation effort of each harmonic is shared considering the respective current harmonic supplied by the DGs. The control system of each DG comprises harmonic compensator, fundamental power controllers, voltage and current proportional-resonant controller and virtual impedance loop. Virtual impedance is considered at fundamental frequency to enhance power control and also at harmonic frequencies to improve the nonlinear load sharing among DGs. The control system design is discussed in detail. The presented simulation results demonstrate the effectiveness of the proposed method in compensation of the voltage harmonics to an acceptable level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.