Abstract

The Gd3Al2Ga3O12 (Ce:GAGG) is a new inorganic scintillator known for its attractive properties such as high light yield, stopping power and relatively fast decay time. In this study, we fabricated a ceramic Ce:GAGG scintillator as a cost-effective alternative to single crystal Ce:GAGG and, for the first time, investigated their performances when coupled to the digital silicon photomultiplier (dSiPM)—a new type of photosensor designed for applications in medical imaging, high energy and astrophysics. Compared to 3 × 3 × 2 mm3 sized single crystal Ce:GAGG, the translucent ceramic Ce:GAGG, which has a much lower transmittance than the single crystal, was determined to give an output signal amplitude that is approximately 61% of single crystal Ce:GAGG. The energy resolution of the 511 keV annihilation peak of a 22Na source was measured to be 9.9 ± 0.2% and 13.0 ± 0.3% for the single and ceramic scintillators respectively. On the other hand, the coincidence resolving time (CRT) of ceramic Ce:GAGG was 307 ± 23 ps, better than the 465 ± 37 ps acquired with single crystals—probably attributed to its slightly faster decay time and higher proportion of the fast decay component. The ceramic Ce:GAGG may be a promising cost-effective candidate for applications that do not require thick scintillators such as x-ray detectors and charged particle detectors, and those that require time-of-flight capabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call