Abstract

This study focuses on designing and optimizing Permanent Magnet Synchronous Motors (PMSMs) using hybrid rare earth and ferrite materials. Two distinctive rotor topologies of the Hybrid-Type Permanent Magnet Motor (HTPMM) are proposed: series and parallel magnetic circuits. Initially, the rotor topology and magnetic circuit principles of both the prototype and the designed HTPMM are introduced. Subsequently, a multi-objective genetic algorithm is employed to optimize the two HTPMMs, determining the final optimized parameters. Thise study further analyzes the cost advantage of HTPMMs from the perspective of permanent magnet materials, and detailed finite element analysis is conducted to evaluate the electromagnetic performance, including the air-gap flux density, no-load back electromotive force, cogging torque, load torque characteristics, and demagnetization properties. A comparative analysis of the prototype and two designed motors reveals that the HTPMM exhibits similar performance to the prototype, effectively reducing the usage of rare earth materials and significantly lowering the manufacturing costs. This research validates the feasibility of reducing rare earth material usage while maintaining a similar performance and provides a new perspective for the design of permanent magnet motors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call