Abstract

In this paper, we investigate the performance limits of underwater visible light communication (UVLC) systems. We first develop a closed-form path loss expression as a function of transceiver parameters and water type. We then utilize this new expression to determine the maximum achievable link distance for UVLC systems in pure sea, clear ocean, coastal water, and harbor water. Our results demonstrate that the maximum achievable distance is limited to a few tens of meters. This necessitates the deployment of relay-assisted UVLC systems to extend the transmission range. We consider both detect-and-forward and amplify-and-forward relaying. For each relaying method, we first consider a dual-hop UVLC system and determine optimal relay placement to minimize the bit error rate (BER). Then, we consider a multi-hop system with equidistant relays and determine the maximum achievable distance for a given number of hops to satisfy a targeted end-to-end BER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.