Abstract
In this work, we investigate the integration of ultrathin galvanic cell batteries with high energy density and flexibility into the highly deformable wings of the flapping wing air vehicle (FWAV) known as “Robo Raven” that we previously developed for independent wing control. The goal of this research was to create a multifunctional wing structure that provides higher energy density than the existing, singular function, lithium polymer batteries currently being used to power the platform. The key areas of inquiry explored are the effect the integration of batteries has on the aerodynamic forces generated during flapping under simulated flight conditions, and whether there is an adverse effect on flight performance where the platform payload capacity is diminished for similar flight time. Upon investigation, we determine that the electrical performance of the battery is as expected after integration into the wing structure, while force generation is not significantly affected, which enhances flight time enhancement and/or payload capacity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have