Abstract

The length of Source/Drain (S/D) extension (LSDE) of nano-node p-channel FinFETs (pFinFETs) on SOI wafer influencing the device performance is exposed, especially in drive current and gate/S/D leakage. In observation, the longer LSDE pFinFET provides a larger series resistance and degrades the drive current (IDS), but the isolation capability between the S/D contacts and the gate electrode is increased. The shorter LSDE plus the shorter channel length demonstrates a higher trans-conductance (Gm) contributing to a higher drive current. Moreover, the subthreshold swing (S.S.) at longer channel length and longer LSDE represents a higher value indicating the higher amount of the interface states which possibly deteriorate the channel mobility causing the lower drive current. DOI: 10.21883/FTP.2017.12.45190.8421

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.