Abstract
Earthquakes can cause serious damage to traffic infrastructures, among which the impact on bridge structure is the most important. Therefore, in order to assess bridges serviceability, it is important to master their damage mechanism and to analyze its probability of occurrence under a given seismic action. Various uncertainties, like the location of epicentre of future earthquakes and their magnitudes, make this task quite challenging. We are also required to consider different earthquake scenarios and the damaged states of bridge components associated with those earthquakes. To suppress these difficulties, this study proposed a new method of performance-based seismic fragility and risk assessment for bridges. The proposed method included three steps: (1) performance-based seismic fragility estimation of a five-span continuous rigid frame bridge, (2) seismic hazard analysis for locations of the bridge, and (3) seismic risk analysis of the bridge. The proposed method that considered the performance of the bridge and the uncertainty in the location of the earthquake epicentre and magnitudes can provide valuable references for seismic-resistant design of multispan continuous rigid frame bridges in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.