Abstract
Finding an optimal design for a structural system subject to seismic actions to minimize failure probability, repair costs, and injuries to occupants, significantly contributes to the resilience of buildings in earthquake regions. This research presents a comprehensive framework for the performance-based design optimization of steel structures, incorporating the Performance-Based Earthquake Engineering (PBEE) methodology delineated in FEMA P-58 [1]. A selected set of ground motions, consistent with the seismic hazard intensity of interest, and a nonlinear finite element model, established using OpenSees, enable the assessment of the system's dynamic response. To address the computational complexity related to evaluating the probability of failure of the system during an optimization iteration when using the PBEE methodology for assessing performance, this study introduces metamodeling techniques as a substitute for the original high-fidelity nonlinear finite element model. In particular, Kriging is employed to approximate both the median and standard deviation of the Engineering Demand Parameters (EDPs) in the design domain. The parameters of the Kriging metamodels are derived from nonlinear dynamic analyses performed using the original high-fidelity model and an optimal sampling plan obtained through Latin Hypercube sampling. Under the assumption of a lognormal distribution, the metamodel is then used to generate a large number of simulated demand sets necessary for the Monte Carlo procedure adopted by FEMA P-58 to calculate the distribution of probable losses for any given value of the design variable vector. Additionally, the median and standard deviation of the fragility function modeling collapse are also approximated by a Kriging metamodel, in which the parameters are derived from an Incremental Dynamic Analysis (IDA) for any given value of the design variable vector. The scheme is illustrated in a full-scale case study consisting of the performance-based optimization of the buckling-restrained braces of a steel seismic force-resisting system in terms of expected losses and construction costs. The study demonstrates that the proposed risk-based optimization scheme effectively balances construction costs with expected financial losses from earthquakes, thus enhancing the seismic performance of the system.[1] Applied Technology Council, & National Earthquake Hazards Reduction Program (US). (2012). Seismic performance assessment of buildings. Federal Emergency Management Agency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have