Abstract

Design a nonlinear controller for second order nonlinear uncertain dynamical systems is the main challenge in this paper. This paper focuses on the design and analysis of a chattering free Mamdani's fuzzy-based tuning gradient descent optimal error-based fuzzy sliding mode controller for highly nonlinear dynamic six degrees of freedom robot manipulator, in presence of uncertainties. Conversely, pure sliding mode controller is used in many applications; it has two important drawbacks namely; chattering phenomenon and nonlinear equivalent dynamic formulation in uncertain dynamic parameter. In order to solve the uncertain nonlinear dynamic parameters, implement easily and avoid mathematical model base controller, Mamdani's performance/error-based fuzzy logic methodology with two inputs and one output and 49 rules is applied to pure sliding mode controller. Pure sliding mode controller and error-based fuzzy sliding mode controller have difficulty in handling unstructured model uncertainties. To solve this problem applied fuzzy-based tuning method to error-based fuzzy sliding mode controller for adjusting the sliding surface gain. Since the sliding surface gain is adjusted by gradient descent optimization method. Fuzzy-based tuning gradient descent optimal error-based fuzzy sliding mode controller is stable model-free controller which eliminates the chattering phenomenon without to use the boundary layer saturation function. Lyapunov stability is proved in fuzzy-based tuning gradient descent optimal fuzzy sliding mode controller based on switching (sign) function. This controller has acceptable performance in presence of uncertainty (e.g., overshoot=0%, rise time=0.8 second, steady state error = 1e-9 and RMS error=1.8e-12).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.