Abstract

AbstractA high power enzymatic fuel‐cell was anticipated by using a recently developed glucose oxidase (GOx) immobilized bio‐anode, a conventional platinum−carbon based cathode and a popular high performance 125 μ‐thick perfluorosulfonic acid‐type proton exchange membrane (i. e. Nafion® 115). Unexpected current density decay from 2.13 mA cm−2 to 0.28 mA cm−2 was observed within 2 hours. Polarization measurements and AC impedance analysis indicated that loss of performance was linked to the membrane behavior. Ion exchange between buffer solution and membrane was perceived as the main cause for the fast performance loss. Saturation of the membrane with the cation in the buffer solution diminished proton transfer needed for cathode reaction. Charge transfer resistances, obtained from AC impedance data, increased with time substantially due to cation exchange within membrane. Replacement of membrane with the same enzyme electrode and cathode has resulted 100 % current density recovery on the fuel cell performance. It was concluded that a membrane, not affected by the buffer cations, was required for successful enzymatic fuel cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.