Abstract
Solar heat at moderate temperatures around 200 °C can be utilized for augmentation of conventional steam-injection gas turbine power plants. Solar concentrating collectors for such an application can be simpler and less expensive than collectors used for current solar power plants. We perform a thermodynamic analysis of this hybrid cycle, focusing on improved modeling of the combustor and the water recovery condenser. The cycle's water consumption is derived and compared to other power plant technologies. The analysis shows that the performance of the hybrid cycle under the improved model is similar to the results of the previous simplified analysis. The water consumption of the cycle is negative due to water production by combustion, in contrast to other solar power plants that have positive water consumption. The size of the needed condenser is large, and a very low-cost condenser technology is required to make water recovery in the solar STIG cycle technically and economically feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.