Abstract

Abstract Solar heat at moderate temperatures around 200 °C can be utilized for augmentation of conventional steam-injection gas turbine power plants. Solar concentrating collectors for such an application can be simpler and less expensive than collectors used for current solar power plants. We perform a thermodynamic analysis of this hybrid cycle. High levels of steam-to-air ratio are investigated, leading to high power augmentation compared to the simple cycle and to conventional STIG. The Solar Fraction can reach up to 50% at the highest augmentation levels. The overall conversion efficiency from heat to electricity (average over fuel and solar contributions) can be in the range of 40–55% for typical candidate turbines. The incremental efficiency (corresponding to the added steam beyond conventional STIG) is in the range of 22–37%, corresponding to solar-to-electricity efficiency of about 15–24%, similar to and even exceeding current solar power plants using higher temperature collectors. The injected water can be recovered and recycled leading to very low water consumption of the cycle, but a very low cost condenser is required to make water recovery feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.