Abstract

Gd2O3-based metal-insulator-metal capacitors have been characterized with single layer (Gd2O3) and bilayer (Gd2O3/Eu2O3 and Eu2O3/Gd2O3) stacks for analog and DRAM applications. Although single layer Gd2O3 capacitors provide highest capacitance density (15 fF/μm2), they suffer from high leakage current density, poor capacitance density-voltage linearity, and reliability. The stacked dielectrics help to reduce leakage current density (1.2×10-5 A/cm2 and 2.7 × 10-5 A/cm2 for Gd2O3/Eu2O3 and Eu2O3/Gd2O3, respectively, at -1 V), improve quadratic voltage coefficient of capacitance (331 ppm/V2 and 374 ppm/V2 for Gd2O3/Eu2O3 and Eu2O3/Gd2O3, respectively, at 1 MHz), and improve reliability, with a marginal reduction in capacitance density. This is attributed to lower trap heights as determined from Poole-Frenkel conduction mechanism, and lower defect density as determined from electrode polarization model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.