Abstract

This paper mainly studies the replacement performance of R290 in R22 low temperature heat pump system from the experimental point of view. By comparing the performance differences under different working conditions, it is found that when R22 is directly extracted from the original system and filled with R290, the heat capacity and COP of the system are attenuated, and the compressor discharge temperature and pressure of the R290 system are higher than those of the original R22 system in low temperature environment. Through the analysis of the system components, it can be considered that the main reason for the above phenomenon is that the compressor displacement of the R22 system is too large and does not match the R290 system. Therefore, in order to meet the safety requirements of the system and improve the overall performance of R290 in the low temperature heat pump system at the same time, it is considered to replace the compressor with a smaller displacement which is more matched with R290 in the system. The experimental results show that the compressor displacement optimization of the R290 low temperature heat pump system can effectively reduce the exhaust temperature and pressure of the system and improve the overall performance of the system. The COP of the optimized R290 low temperature heat pump system is 6.5% higher than that of the original R22 system, and the exhaust temperature in the low temperature environment is reduced by 36% to below 80 C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call