Abstract
Analysis of a hingeless rotor with a single wing on the retreating side for lift compounding was conducted. The goals included validation of performance and load predictions with wind tunnel test data, study of the impact of different aerodynamic inflow models, and understanding of benefits by lift compounding with a single wing on the retreating side. The three primary test cases include collective sweeps of the isolated rotor, and the rotor with the wing, at two different incidence angles. The comprehensive analysis was able to accurately predict the performance and blade structural loads of both the isolated rotor and rotor plus wing configurations. Overprediction of propulsive force leads to underprediction of lift-to-drag ratio in several cases. The normal bending moments were well captured for all cases, while the chord bending moment predictions had a phase offset from the test data, but magnitude and harmonics were captured. Comparing inflow models found that dynamic inflow and vortex wake (prescribed and free) models provided similar results. At these advance ratios, prescribed and free wake models showed almost no differences. Additionally, the vortex particle method showed an overprediction of thrust and greater rotorto-wing aerodynamic interference compared to test data. The addition of the wing on the retreating side provided dual benefits of increasing maximum lift-to-drag ratio and reduction of structural loads for a given total thrust. These effects are a result of both lift share between the rotor and wing, and lift offset, the rotor carries a roll moment to balance the wing's roll moment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.