Abstract
Performance enhancement and exergy destruction analyses were conducted numerically for vapor-compression refrigeration systems using R22, R134a, R410A, and R717. The first law of thermodynamics combined with finite-temperature-difference heat transfer theory and the second law of thermodynamics were applied to calculate the COP, heat-exchanger area, irreversibility, and friction loss that occurs in heat exchangers used in this system at various condensation and evaporation temperatures. The effects of cooling water in a subcooler, refrigerant pressure drop among heat exchangers, and superheating in an evaporator were also considered. Two dimensionless parameters, which represented initial cost saving and the total exergy destruction of the system, were introduced and evaluated to obtain the optimal degree of subcooling. Compared with evaporation temperature, condensation temperature plays a considerably more crucial role in determining the optimal degree of subcooling for achieving maximal initial cost saving. In addition, the optimal degrees of subcooling obtained according to the second law of thermodynamics were consistently higher than those obtained according to the first law of thermodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.