Abstract

5G and beyond communications systems need to cope with a high degree of heterogeneity in terms of services and requirements. Specially, vehicle-to-everything (V2X) use cases require ultra-reliable and low latency communications (URLLC) under harsh channel conditions. To design an optimal waveform and coding scheme for such use cases is a key challenge. Therefore, new waveforms and coding techniques are need to be investigated. In this paper, we present a comparison of several waveform candidates (orthogonal frequency-division multiplexing (OFDM), discrete Fourier transform-spread-OFDM (DFT-s-OFDM), generalized frequency division multiplexing (GFDM) and orthogonal time frequency space (OTFS)) and coding schemes (convolution, turbo, low-density priority-check (LDPC) and polar) under a common framework. We consider two metrics, i.e. maximum data rates and packet error rate, to evaluate their performance under various fading conditions. The simulation results show that OTFS outperforms all other waveforms in both frequency selective and doubly selective channels. Regarding the coding schemes, turbo codes outperforms all other coding schemes, even though difference with LDPC codes is marginal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call