Abstract
As the era of sixth-generation (6G) communications approaches, there will be an unprecedented increase in the number of wireless internet-connected devices and a sharp rise in mobile data traffic. Faced with the scarcity of spectrum resources in traditional communication networks and challenges such as rapidly establishing communications after disasters, this study leverages unmanned aerial vehicles (UAVs) to promote an integrated multi-hop communication system combining free-space optical (FSO) communication, terahertz (THz) technology, and intelligent reflecting surface (IRS). This innovative amalgamation capitalizes on the flexibility of UAVs, the deployability of IRS, and the complementary strengths of FSO and THz communications. We have developed a comprehensive channel model that includes the effects of atmospheric turbulence, attenuation, pointing errors, and angle-of-arrival (AOA) fluctuations. Furthermore, we have derived probability density functions (PDFs) and cumulative distribution functions (CDFs) for various switching techniques. Employing advanced methods such as Gaussian–Laguerre quadrature and the central limit theorem (CLT), we have calculated key performance indicators including the average outage probability, bit error rate (BER), and channel capacity. The numerical results demonstrate that IRS significantly enhances the performance of the UAV-based hybrid FSO/THz system. The research indicates that optimizing the number of IRS elements can substantially increase throughput and reliability while minimizing switching costs. Additionally, the multi-hop approach specifically addresses the line-of-sight (LoS) dependency limitations inherent in FSO and THz systems by utilizing UAVs as dynamic relay points. This strategy effectively bridges longer distances, overcoming physical and atmospheric obstacles, and ensures stable communication links even under adverse conditions. This study underscores that the enhanced multi-hop FSO/THz link is highly effective for emergency communications after disasters, addressing the challenge of scarce spectrum resources. By strategically deploying UAVs as relay points in a multi-hop configuration, the system achieves greater flexibility and resilience, making it highly suitable for critical communication scenarios where traditional networks might fail.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have