Abstract
By utilizing chirp-BOK (binary orthogonal keying) modulation into a troposphere scattering communication system, a lower demodulation threshold can be achieved with excellent linear frequency modulation properties in a strong noise and weak signal environment. Firstly, the bit error rate (BER) formula of chirp-BOK modulation over a Rayleigh fading channel was derived theoretically. Then, the BER performance with different chirp-BOK parameters were numerically calculated. In order to investigate the performance of chirp-BOK over deeping fading troposphere scattering link, a seven-path equal-delay Rayleigh fading model was employed. Finally, the system BER performance was simulated under different tap delay and time–bandwidth product parameters. The results demonstrate that when BER reaches 10−4, the optimal configuration of the system achieves a gains approximately from 1.7 dB to 10 dB compared to non-optimized configuration under different Path-Gain-Vector with varying tap delays.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.