Abstract

In recent years, sunlight has been used in several fields such as photovoltaic cells, flat plate collectors, solar cookers, green buildings, and agricultural applications. Improved thermal performance has been seen which comes of three sides absorber plate with glass cover compared to the traditional one. This paper presents the Nusselt (Nu) number, collector efficiency factor (CEF), and collector heat removal factor (CHRF) for the optimal solution of three sides artificially roughened solar air heater. Five input variables such as Reynolds (Re) number, relative roughness pitch, relative roughness height, mass flow rate, and air temperature of the duct are taken into account for improved efficiency optimization of collector, collector heat removal factor, and Nu number. Technique for order of preference by similarity to ideal solution (TOPSIS) technique is used to identify the best alternative amongst a number of performance measures by converting them into an equivalent single variable. Moreover, the results revealed the high accuracy of the CEF, CHRF, and Nu number of 75–80%, 74–78%, and 63–71%, respectively. Meanwhile, it has been also observed that roughness Re number varies between 12,500 and 13,500, and height of relative roughness is 0.0245, including pitch of relative roughness 10 along with the rate of mass flow is 0.041 kg/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.