Abstract

The power conversion unit (PCU) of a large solar chimney power plant consists of one or several turbogenerators, power electronics, a grid interface and the flow passage from collector exit to chimney inlet. The main goals of this paper are to analyze the performance of the PCU and its interaction with the plant as well as to compare three configurations from an efficiency and energy yield point of view. First, a reference plant is defined and the plant performance data taken from simulations with a model found in the literature are analyzed, and the matching of the turbine(s) to the characteristic of the plant is discussed. It was found that a well designed turbine can be run at high efficiency over the entire operating range, as the plant performance data can be fitted using the ellipse law of Stodola. Loss models for all components of the power conversion unit are then defined, and the impact of the various losses on the overall performance is assessed. Three configurations of the PCU are compared, i.e. the single vertical axis, the multiple vertical axis and the multiple horizontal axis turbine configuration. It is found that the single vertical axis turbine has a slight advantage with regards to efficiency and energy yield because certain loss mechanisms are not present. But its output torque is tremendous, making its feasibility questionable. It is shown that with designing the flow passage in an appropriate manner the aerodynamic losses can be kept low. The assumption made by many other researchers that the total-to-total efficiency of the PCU is 80 % has been confirmed with the present model. Further, it has been shown that the PCU efficiency deteriorates significantly with increasing diffuser area ratio but improves only slightly with reducing the diffuser area ratio below unity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call