Abstract

Satellite Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity by broadcasting to the civil aviation community the corrections and integrity parameters. A snapshot algorithm based on the minimum variance estimation is investigated in this study to calculate the satellite clock and orbit corrections. A chi-square test is performed on the remaining errors in the corrected ephemeris to guarantee the integrity. User Differential Range Error (UDRE) and scaling matrix contained in Message Type 28 are derived using the covariance information based on the assumption that one of the reference stations failed. A software package is developed and applied in the real data collected at 26 stations. International GNSS (Global Navigation Satellite System) Service (IGS) precise clock and orbit products are taken as the references to assess the accuracy of corrections. For both Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS), the range accuracy of 0.10 m can be achieved with the employment of the derived corrections. No obvious performance difference between GPS and BDS is found. UDREs for all visible satellites are generated with the maximum index of 12 and minimum index of 3. The geometric range differences calculated with IGS precise products and broadcast ephemeris are employed to assess the integrity of UDRE. It is found that the UDRE is able to bound the residuals with 99.9% confidence which meet the requirement of aviation users. With ionospheric delay corrected by Global Ionosphere Map (GIM), the positioning accuracy of 0.98 m with GPS corrections and 0.80 m with multi-constellation augmentation can be achieved which indicates a significant improvement of GPS standalone results.

Highlights

  • In order to meet the accuracy, continuity, availability, and especially integrity requirements of civil aviation navigation based on Global Navigation Satellite System (GNSS), various Satellite Based Augmentation Systems (SBASs) have been developed, such as Wide Area Augmentation System (WAAS) in the USA, European Geostationary Navigation Overlay Service (EGNOS) in Europe, GPS (Global Positioning System) Aided Geo Augmented Navigation (GAGAN) in India, and MTSAT

  • Performance analysis In order to verify the performance of the proposed algorithms, GPS and BeiDou Navigation Satellite System (BDS)-3 satellite corrections as well as User Differential Range Error (UDRE) and Message Type 28 (MT28) are estimated with the data collected at 26 stations on 1st to 7th July 2020

  • The minimum variance estimation is applied to calculate the broadcast ephemeris corrections and a covariance based UDRE and MT28 derivation method is implemented in this research

Read more

Summary

Introduction

In order to meet the accuracy, continuity, availability, and especially integrity requirements of civil aviation navigation based on Global Navigation Satellite System (GNSS), various Satellite Based Augmentation Systems (SBASs) have been developed, such as Wide Area Augmentation System (WAAS) in the USA, European Geostationary Navigation Overlay Service (EGNOS) in Europe, GPS (Global Positioning System) Aided Geo Augmented Navigation (GAGAN) in India, and MTSAT (Multi-functional Transport Satellite) Satellite-based Augmentation System (MSAS) in Japan. The confidences of the ephemeris corrections, User Differential Range Error (UDRE), and the scaling matrix contained in Message Type 28 (MT28) SBAS provides UDRE for each satellite to inform users the accuracy level of the ephemeris corrections (Walter et al, 2018).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call