Abstract

For sites near the tropic of cancer, an efficient technique to artificially improve solar photovoltaic (PV) performance by integrating the commercial flat stainless-steel (SS) reflector is determined in this study. The present research work focuses on the structural importance of reflectors and proposes a novel method for extracting more power output with fewer efforts. The system's optimum tilt has been calculated for various reflector diameters (L_ratio = 1 to 6, W_ratio = 1 to 6). A 3-D model has been used for wavelength-based reflection analysis on an hourly basis. The length of the reflector should be limited by the interrow distance between PV strings, for which the system's optimal tilt must be determined. For the latitude range of 20°–30°N, the yearly optimal tilt of the PV module has been recorded in between 32° and 40° with reflector tilt 19°–13° for the same size reflector.The annual energy gain has been estimated as 18.35%, which improved up to 34.16% with reflector dimension for the Jaipur location (26°N). For effective reflector size, the gain increased as 28.31–31.33% for the latitude range 20–30°N. The study suggested that the two-time tilt adjustment in a year is sufficient for countable gain improvement, reducing complexity for an operative PV plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.